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What is the Query-Focused 

Summarization? 

 A variant of automatic text summarization, 
which reflects the given query. 

 used for 

 search result snippet 

 support summaries for answers in question-
answering systems 

 and so on 

 usually based on sentences’ score and 
relevance score with query. 



Automatic summarization as a 

optimization problem 

Recently (extractive) automatic 

summarizations are formalized as an 

optimization problem. 

 instead of greedy selecting the highest score 

sentences. 

 

 



Automatic summarization as a 

optimization probolem 

sentence 

ID 

score # of 

chars. 

1 0.8 35 

2 0.7 20 

3 0.9 17 

4 0.6 48 

5 0.5 19 

sentences 

that gives 

max score <= 

40 chars 

 

select 2, 3 

this can be assumed as 0-1 Knapsack Problem 



Problem with score based methods. 

 A resulting summary may not contain any word 

in the query.  

 may possible to reduce the probability by the weight 

of  relevance score. 

 Essentially we cannot avoid that. 

 Crucial information especially for support 

summary of question-answering. 

 also import for web snippets. 

score = sentence importance score ＋ 

relevance score with the query 



Adding New Constraint to Objective 

y* = argmax
y

f (y,q) = wi (q)yi

i=1

N
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subject to li yi
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objective function 

length constraint 

proposed constraint 

that assures inclusion of  

query terms 

number of sentences 

that includes words in 

the query 

vector representing the 

selected sentences. 



Problem with new formalization 

 By adding the constraint we can assure 

the inclusion of at least one word of the 

query. 

 However, the new form problem is not a 0-

1 knapsack problem. 

(reason) the function is not a linear function of y. 

 

 



 Introducing Lagrangian Relaxation 

Original problem:  

y* = argmax
y

f (y,q) = wi (q)yi

i=1

N

å

subject to li yi

i=1

N

å £ Lmax

 cq(yi )
i=1

N

å ³1

objective function 

length constraint 

propoosed constraint 

that assures inclusion of  

query terms 



It’s Lagrangian Relaxation  

L(u, y) = f (y,q)+u cq(yi )-1
i=1
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subject to li yi

i=1

N

å £ Lmax

Lagrange multipliers 

Add 

constraint to 

the objective 

function. 

Now L() is the linear function of y  

can be maximized as a knapsack problem 



Lagrangian Dual Problem 

Lagrangian 

 

 

Lagrangian dual problem 

 

 

 
by using subgradient method we can get the tightest 
upper bound of the exact solution of the original 
problem.  

 



Solving process 

get y that maximize the Lagrangian 

 

 

updating Lagrangian multiplier 

 

 

can solve efficiently 

using subgradient  

method 



Summaries so far 

  introduced a new constraint to 

summarization 

 at least one word of the query must be 

contained. 

 by exploiting Lagrangian relaxation, the 

problem can be solved by iteration of 

knapsack problem. 



One word → n word 

 For longer queries, we want summaries 

containing more keywords than one. 

 extend the constraint to contain at least 

any n  (content) words in the query. 



Naïve Formulation 

s (cmake(y))+s (cfirst(y))+s (cairplane(y))+s (cfly(y)) ³ 2

s (x) =
1 (x > 0)

0 (x = 0)

ì
í
ï

îï

straight-forward write down of the condition: 

This cannot be solved as a knapsack problem  

 : number of 

sentences that 

includes ``make’’ 

y: vector 

representing the 

selected sentences. 

cmake(y)

{make, first, airplane, fly} 

 ``Who made the first airplane that could fly?’’ 

content words 



Contain n words from a set 

of Q words. 

 

can be expressed by               

constraints of linear 

function 

 

It’s practical in case m is 

small. 

Formalize by Linear Function 

QCQ-n+1
cmake (y)+ cfirst(y) ³1

cmake (y)+ cairplane(y) ³1

cmake (y)+ cfly(y) ³1

cfirst(y)+ cairplane(y) ³1

cfirst(y)+ cfly(y) ³1

cairplane(y)+ cfly(y) ³1

{make, first, airplane, fly} 



(Additinonal usage)  

Constraint by NE type  

In case the query is a question and we can 

determine the question type. 

 
 

the summary should contain a named entity (NE) 

that matches the request type. 



NE type constraint example 

``Who made the first 

airplane that could fly?’’ 

 

``When was George 

Foreman born?’’ 

 

 

WHEN 

WHO 

{July, Sunday, Friday, August, 

 1949, 1951, 1970, …}  

{The president, Charles  

Lindbergh, Scott Lindbergh,  

Raymond Orteig, …} 

question 
question 

 type 

words that matches the 

NE type 

add constraint that contain 

at least one of this set. 



Evaluation 



Dataset 

 Text Summarization Challenge 3 (TSC3) 

 A dataset for query-focused multi-document 

summarization on Japanese news-wire. 

 consists of documents, questions and 

reference summaries produced by humans. 

 References are made so as to supply the 

answer to the given question. 

 30 topics. 

 



Evaluation Settings 

 evaluated using average ROUGE socres 

over the 30 topics. 

 ROUGE:  a standard method to evaluate 

automatic summarization. 

 Baseline: no constraints on inclusion of 

query terms. 

 Constraints in our method: at least  

n (=1,2,3) content words of question. 

 



Method ROUGE-1 

baseline 0.452 

n=1 0.454 

n=2 0.467 

n=3 0.474 

n=1+NE 0.462 

n=2+NE 0.467 

n=3+NE 0.482 

Evaluation Result (ROUGE-1) 

0,45 

0,46 

0,47 

0,48 

n=1 n=2 n=3 

word + NE 

word 

baseline 



Method ROUGE-2 

baseline 0.233 

n=1 0.236 

n=2 0.247 

n=3 0.250 

n=1+NE 0.245 

n=2+NE 0.249 

n=3+NE 0.260 
0,23 

0,24 

0,25 

0,26 

n=1 n=2 n=3 

Evaluation Result (ROUGE-2) 

word + NE 

word 

baseline 



Discussions 

 All proposed settings significantly improve 
ROUGE score. 
 The reference summary is intended to support 

answer and tend to contain many words in the 
question. 

 Score increases with n. 
 (open) How to know the optimal n? 

 By adding NE constraint, the scores are 
further imporeved 
 But the difference is not significant. 



Summary 

 Inroduced a new constraint into query 

biased summarization that 

 Lagrangian relaxation brings us fast solve 

 using DP + updating parameter 

  Easily expandable to handle NE type 



Thank you! 

Arigato. 


