
A Query-Focused Summarization

Method that Guarantees the

Inclusion of Query Words

Norihito Yasuda, Masaaki Nishino, Tsutomu
Hirao, Jun Suzuki and Ryoji Kataoka

NTT Corporation

What is the Query-Focused

Summarization?

 A variant of automatic text summarization,
which reflects the given query.

 used for

 search result snippet

 support summaries for answers in question-
answering systems

 and so on

 usually based on sentences’ score and
relevance score with query.

Automatic summarization as a

optimization problem

Recently (extractive) automatic

summarizations are formalized as an

optimization problem.

 instead of greedy selecting the highest score

sentences.

Automatic summarization as a

optimization probolem

sentence

ID

score # of

chars.

1 0.8 35

2 0.7 20

3 0.9 17

4 0.6 48

5 0.5 19

sentences

that gives

max score <=

40 chars

select 2, 3

this can be assumed as 0-1 Knapsack Problem

Problem with score based methods.

 A resulting summary may not contain any word

in the query.

 may possible to reduce the probability by the weight

of relevance score.

 Essentially we cannot avoid that.

 Crucial information especially for support

summary of question-answering.

 also import for web snippets.

score = sentence importance score ＋

relevance score with the query

Adding New Constraint to Objective

y* = argmax
y

f (y,q) = wi (q)yi

i=1

N

å

subject to li yi

i=1

N

å £ Lmax

 cq(yi)
i=1

N

å ³1

objective function

length constraint

proposed constraint

that assures inclusion of

query terms

number of sentences

that includes words in

the query

vector representing the

selected sentences.

Problem with new formalization

 By adding the constraint we can assure

the inclusion of at least one word of the

query.

 However, the new form problem is not a 0-

1 knapsack problem.

(reason) the function is not a linear function of y.

 Introducing Lagrangian Relaxation

Original problem:

y* = argmax
y

f (y,q) = wi (q)yi

i=1

N

å

subject to li yi

i=1

N

å £ Lmax

 cq(yi)
i=1

N

å ³1

objective function

length constraint

propoosed constraint

that assures inclusion of

query terms

It’s Lagrangian Relaxation

L(u, y) = f (y,q)+u cq(yi)-1
i=1

N

å
æ

è
ç

ö

ø
÷

subject to li yi

i=1

N

å £ Lmax

Lagrange multipliers

Add

constraint to

the objective

function.

Now L() is the linear function of y

can be maximized as a knapsack problem

Lagrangian Dual Problem

Lagrangian

Lagrangian dual problem

by using subgradient method we can get the tightest
upper bound of the exact solution of the original
problem.

Solving process

get y that maximize the Lagrangian

updating Lagrangian multiplier

can solve efficiently

using subgradient

method

Summaries so far

 introduced a new constraint to

summarization

 at least one word of the query must be

contained.

 by exploiting Lagrangian relaxation, the

problem can be solved by iteration of

knapsack problem.

One word → n word

 For longer queries, we want summaries

containing more keywords than one.

 extend the constraint to contain at least

any n (content) words in the query.

Naïve Formulation

s (cmake(y))+s (cfirst(y))+s (cairplane(y))+s (cfly(y)) ³ 2

s (x) =
1 (x > 0)

0 (x = 0)

ì
í
ï

îï

straight-forward write down of the condition:

This cannot be solved as a knapsack problem 

 : number of

sentences that

includes ``make’’

y: vector

representing the

selected sentences.

cmake(y)

{make, first, airplane, fly}

 ``Who made the first airplane that could fly?’’

content words

Contain n words from a set

of Q words.

can be expressed by

constraints of linear

function

It’s practical in case m is

small.

Formalize by Linear Function

QCQ-n+1
cmake (y)+ cfirst(y) ³1

cmake (y)+ cairplane(y) ³1

cmake (y)+ cfly(y) ³1

cfirst(y)+ cairplane(y) ³1

cfirst(y)+ cfly(y) ³1

cairplane(y)+ cfly(y) ³1

{make, first, airplane, fly}

(Additinonal usage)

Constraint by NE type

In case the query is a question and we can

determine the question type.

the summary should contain a named entity (NE)

that matches the request type.

NE type constraint example

``Who made the first

airplane that could fly?’’

``When was George

Foreman born?’’

WHEN

WHO

{July, Sunday, Friday, August,

 1949, 1951, 1970, …}

{The president, Charles

Lindbergh, Scott Lindbergh,

Raymond Orteig, …}

question
question

 type

words that matches the

NE type

add constraint that contain

at least one of this set.

Evaluation

Dataset

 Text Summarization Challenge 3 (TSC3)

 A dataset for query-focused multi-document

summarization on Japanese news-wire.

 consists of documents, questions and

reference summaries produced by humans.

 References are made so as to supply the

answer to the given question.

 30 topics.

Evaluation Settings

 evaluated using average ROUGE socres

over the 30 topics.

 ROUGE: a standard method to evaluate

automatic summarization.

 Baseline: no constraints on inclusion of

query terms.

 Constraints in our method: at least

n (=1,2,3) content words of question.

Method ROUGE-1

baseline 0.452

n=1 0.454

n=2 0.467

n=3 0.474

n=1+NE 0.462

n=2+NE 0.467

n=3+NE 0.482

Evaluation Result (ROUGE-1)

0,45

0,46

0,47

0,48

n=1 n=2 n=3

word + NE

word

baseline

Method ROUGE-2

baseline 0.233

n=1 0.236

n=2 0.247

n=3 0.250

n=1+NE 0.245

n=2+NE 0.249

n=3+NE 0.260
0,23

0,24

0,25

0,26

n=1 n=2 n=3

Evaluation Result (ROUGE-2)

word + NE

word

baseline

Discussions

 All proposed settings significantly improve
ROUGE score.
 The reference summary is intended to support

answer and tend to contain many words in the
question.

 Score increases with n.
 (open) How to know the optimal n?

 By adding NE constraint, the scores are
further imporeved
 But the difference is not significant.

Summary

 Inroduced a new constraint into query

biased summarization that

 Lagrangian relaxation brings us fast solve

 using DP + updating parameter

 Easily expandable to handle NE type

Thank you!

Arigato.

